

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 381-385www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209381385 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 381

Dining Philosophers Theory and Concept in Operating

System Scheduling

Phavya.J,Pratheeksha.K.S, Tissyashri.S, Dr.M.SujithraM.C.A

M.Phil., Phd.,Dr.A.D.Chitra M.C.A M.Phil., Phd.
2

nd
 Year, M.Sc. Software Systems (Integrated),Coimbatore Institute of Technology,Coimbatore

Assistant Professor, Department of Data Science Coimbatore Institute of Technology, Coimbatore

Assistant Professor, Department of Software Systems, Coimbatore Institute of Technology, Coimbatore

--- ---------

Date of Submission: 10-11-2020 Date of Acceptance: 25-11-2020

--- -------------------------------

ABSTRACT- The Dining Philosophers problem is

a classic case study in the synchronization of

concurrent processes and this research describes

how to avoid deadlock condition in dining

philosophers problem. Dining itself is a situation

where five philosophers sit at a circular table with a

large bowl of spaghetti in the center. A fork is

placed in between each pair of adjacent

philosophers, and as such, each philosopher has

one fork to his left and one fork to his right. As

spaghetti is difficult to serve and eat with a single

fork, it is assumed that a philosopher must eat with

two forks. Each philosopher can only use the forks

on his immediate left and immediate right. The

philosophers never speak to each other, which

creates a dangerous possibility of deadlock when

every philosopher holds a left fork and waits

perpetually for a right fork (or vice versa).To

resolve this condition semaphore variable is used.

It is marked as in a circular waiting state. At first,

most people wear concepts simple synchronization

is supported by the hardware, such as user or user

interrupt routines that may have been implemented

by hardware. In 1967, Dijkstra proposed a concept

wearer an integer variable to count the number of

processes that are active or who are inactive. This

type of variable is called semaphore. The mostly

semaphore also be used to synchronize the

communication between devices in the device. In

this journal, semaphore used to solve the problem

of synchronizing dining philosophers problem.This

paper presents the efficient distributed deadlock

avoidance scheme using lock and release method

that prevents other thread in the chain to make race

condition.

KEYWORDS-Dining Philosophers Problem, Race

Condition, Concurrent, Deadlock, Starvation

I. INTRODUCTION
An Operating System (OS) is an interface

between a computer user and computer hardware.

In the process of designing the operating system,

there is a common base called concurrency.

Concurrent processes are when the processes work

at the same time. This is called the multitasking

operating system. Concurrent processes can be

completely independent of the other but can also

interact with each other. the concurrent processes

that interact, there are some problems to be solved

such as deadlock and synchronization.

The illustration of dining philosopher problem is as

follows:

The five philosophers sit at a circular table

with a large bowl of spaghetti in the center. A fork

is placed in between each pair of adjacent

philosophers, and as such, each philosopher has

one fork to his left and one fork to his right. As

spaghetti is difficult to serve and eat with a single

fork, it is assumed that a philosopher must eat with

two forks. Each philosopher can only use the forks

on his immediate left and immediate right. The

philosophers never speak to each other, which

creates a dangerous possibility of deadlock when

every philosopher holds a left fork and waits

perpetually for a right fork (or vice versa). In

between there may be the possibility of deadlock,

which occurs due to starvation. Deadlock is the

condition in which two or more processes cannot

continue execution at the same time.

II. METHODOLOGY
The philosophers are sitting around a

round table, and there is a big bowl of spaghetti at

the center ofthe table. There are five forks placed

around the table in between the philosophers.

When a philosopher, who ismostly in the thinking

business gets hungry, he grabs the two forks to his

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 381-385www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209381385 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 382

immediate left and right and dead-seton getting a

meal; he gorges on the spaghetti with them. Once

he is full, the forks are placed back, and he

goesinto his mental world again. The problem

usually omits an important fact that a philosopher

never talks toanother philosopher. The typically

projected scenario is that if all the philosophers

grab their fork on their leftsimultaneously none of

them will be able to grab the fork on their right.

Moreover, with their one-track mindset,they will

forever er keep waiting for the fork on their right to

come back on the table.

Assume that we have the simple task of writing

some important information into two files on the

disk.However, these files are shared by other

programs as well. Therefore we use the following

strategy to updatethe files:

Lock A

Lock B

Write information to A and B

Release the locks

This obvious coding can result in

deadlocks if other tasks are also writing to these

files. For example, ifanother task locks B first, then

locks A, and if both tasks try to do their job at the

same time – dead-lock occurs.My task would lock

A, the other task would lock B, then my task would

wait indefinitely to lock B while theother task waits

indefinitely to lock A. This is a simple scenario,

and easy to find out. However, you can have abit

more involved case where task A can wait for a

lock held by task B which is waiting for a lock held

by taskC which is waiting for a lock held by task

A. A circular wait a deadlock results. This is a

Dining Philosophersmodel.

III. IMPLEMENTATION
Dining Philosophers Problem is one of the

classic problems in the synchronization. Dining

Philosophers problem can be illustrated as

follows;we have five philosophers P 1, P 2, P 3, P

4, P 5 who are sitting around a table. One for each

of the philosophers and five forks 1, 2, 3, 4, 5.Now

each of these philosophers could do just one of two

things. Each philosopher could either think or eat.

Now, in order to eat, a philosopher needs to hold

both forks. If P1 wants to eat then he needs to have

the fork 1 and fork 2. Similarly, if P3 wants to eat

then forks 4 and forks 3 are required. Now the

problem is or the problem what we are trying to

solve is to develop an algorithm, where no

philosopher starves that is every philosopher

should eventually get a chance to eat.

Fig 1.First Try Algorithm

 First try: Let us say we have a solution over

here, where we define N as 5 corresponding to

each philosopher. And we have a function for

philosopher. So, this function takes a integer

value ‘i' and this ‘i' could be values of 1 to 5

corresponding to each philosopher that is P 1,

P 2, P 3, P 4 or P 5.Philosopher will think for

some time and then after some time he begins

to feel hungry. So, he will take the fork on his

right and then left, then he is going to eat for

some time, and after that he is going to put

down the left fork, and then right fork, and this

continues in a loop infinitely. So, for instance

philosopher P 1 will think for some time, then

feel hungry, then he would pick up the fork 1,

fork 2, then eat for some time and put down

both the forks.So, this seems like a very simple

solution but it cause issues.

 P1 and P3 have higher priority. So P1 and P3

eats whenever they wants, while others have

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 381-385www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209381385 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 383

less priority. For instance, P2 neither could

pick up right or left fork and therefore, P2

cannot eat. Same for P4 and P5 follows. Thus

P 2, P 4 and P 5 will starve; and this is not the

ideal solution for our problem.

 All philosophers pickup their right

simultaneously. Now, in order to eat each

philosophers have to pick up their left fork and

this could lead to starvation. So, each of the

philosophers is waiting for nearer philosopher

to put down the fork. So, there is a circular

wait and this leads to a deadlock, there by

starvation.

 Second try: We have the same function over

here. The philosopher takes the right fork, then

he would determine if the leftfork is available;

if the left fork is available the philosopher

would take the left fork,eat for sometime then

put down both the forks and theloop continues

as usual.However, if the left fork is not

available, then we go to the else part and the

philosopherwill put back the right fork.So this

will allow another philosopher to probably

eat.And after this is done there is a sleep for

some fixed interval T before the

philosophertries again. Let us see what issue

may cause.

 Let us consider where all philosophers start at

exactly the same time, they run simultaneously

and think for exactly the same time. Here all

philosophers find out that their forks are not

available, so they put down their fork

simultaneously, then they sleep for some time

and then they repeat the process. A slightly

better solution to this case is where instead of

sleeping for a fixed time,the philosopher would

put down the right fork and sleep for some

random amount of time.While this does not

guarantee that starvation will not occur, it

reduces the possibilityof starvation.

Fig 2.Second Try Algorithm

 Third try using Mutex: This particular

solution uses a mutex.Essentially before taking

the right or the left fork, the philosopher needs

to lock amutex.And the mutex is unlocked

only after eating and the forks are put back on

to the table. So, this solution essentially

ensures that starvation will not occur, it

prevents deadlocks.However, the problem here

is that because we are using a mutex, so at

most one philosophercan enter into this critical

section.In other words, at most one

philosopher could eat at any particular

instant.So, while this solution works, it is not

the most efficient solution.So, we would want

something which does much better than this.

Fig 3.Using Mutex

 Forth try using semaphores: This particular

solution uses a semaphores. So let us say that

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 381-385www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209381385 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 384

we have N semaphores; so the semaphores s[1]

to s[n] and we have onesemaphore per

philosopher.So all these semaphores are

initialized to 0; in addition the philosopher can

be in oneof 3 states – hungry, eating or

thinking.For instance when the philosopher is

thinking, the state will be thinking; then the

philosopherbecomes hungry, so it goes to the

hungry state then eating, and then back to

thinking, andthis process continuous till the

eternity.So, the general solution that we will be

seeing here is that a philosopher can only

move to the eating state if neither neighbor is

eating.That is a philosopher can eat only if its

left neighbor as well as its right neighboris not

eating.So, in order to implement this particular

solution, we have four functions. It has four

functions.

 First is the philosophers, which is the infinite

loop and corresponds to the philosopher ‘i’.

The philosopher will think, then it will take

forks, then eat for some time and put down the

forks and this repeats continuously.

 Now in the take fork function, first we set that

the philosopher in a hungry state. The state of

the philosopher is set to hungry then the

function called test is invoked. So, what test

will do is that it’s going to check whether the

state of the philosopher is hungry and as well

as the state of the philosopher to the left as

well as to the right is not in the eating state. If

this indeed is true then the philosopher can eat.

And at the end, after eating, the forks are put

down and the state of the philosopher goes to

thinking.

Fig 4.Using Semaphore Algorithm

 Time A Time B State

Philosopher-1 7 10 15

Philosopher-2 5 4 4

Philosopher-3 6 11 14

Philosopher-4 5 13 11

Philosopher-5 6 12 18

Table 1 Normal Philosopher Properties

From Table 1, it can be seen the

conditions of each philosopher, the philosopher-1

are in a state of satiety as initial conditions are

above the 15-seconds and that only 10 seconds.

The philosopher-2 in a state of hunger because of

the initial conditions = 4 seconds of the time-B,

philosopher-3 are in a condition to be satisfied, the

philosopher-4 in a state of hunger and philosopher-

5 in a state of satiety.The initial condition dining

philosophers problem can be illustrated by the

following illustration: At the time t = 1 second, the

philosopher-1, 3-philosophers and philosopher-5

full and thinking, while philosophers and

philosopher-2-4 hungry and get the chopsticks in

his left hand. At time t = 2 seconds, philosophers

and philosopher-2-4 got two chopsticks and began

eating, while the philosopher-1, 3-philosophers,

and philosopher-5 are still satisfied and thinking.

At time t = 3 second, the philosopher-3 was hungry

(for the lifetime of the philosopher-3 now = time-B

is 11 second) and started looking for chopsticks,

but did not get chopsticks for chopsticks on the left

is used by the philosopher-4 and chopsticks on the

right is used by the philosopher-2. At time t = 5

seconds, the philosopher-1 was hungry (for the

lifetime of the current philosopher-1-B = time of10

seconds) and look for chopsticks. Philosopher-1 to

get the chopsticks in the right hand. At time t = 6

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 381-385www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209381385 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 385

second, philosopher-5 was hungry (for the lifetime

of the current philosopher-5-B = time is 12

seconds) and look for chopsticks. The philosopher-

5 did not get chopsticks. At the time t = 9 seconds,

philosopher-2 full (because his life has reached its

maximum value, which is 9-second = time A +

time-B) and start thinking. The philosopher3 to get

the chopsticks in the right hand. At time t = 10

second, philosopher-1 got two chopsticks and

began eating. At time t = 11 second, philosopher-4

satiety and start thinking. The philosopher-5 to get

the chopsticks in the right hand. At time t = 12

second, philosopher-3 got two chopsticks and

began eating.

 The simulation process will continue by

the procedure. The simulation will only stop if

there is a deadlock condition. A deadlock condition

in the simulation dining philosophers problem

occurs when at one time; all the philosophers get

hungry simultaneously, and all philosophers take

the chopsticks in his left hand. By the time the

philosopher will take the chopsticks in the right

hand, then there was a deadlock condition since all

philosophers will both waiting for chopsticks on

the right (a condition that will never happen). For

the case of deadlock, consider the following:

 Time A Time B State

Philosopher-1 17 12 27

Philosopher-2 5 3 2

Philosopher-3 15 10 25

Philosopher-4 6 5 5

Philosopher-5 20 5 20

Table 2 Deadlock Philosopher Properties

From Table 2, at the time t = 1 second,

philosophers and philosopher-2-4 hungry and get

the chopsticks in his left hand, while the

philosopher-1, philosopher-3 and philosopher-5 full

and thinking. At time t = 2 seconds, philosophers

and philosopher-2-4 got two chopsticks and began

eating. At time t = 10 second, philosophers and

philosopher-2-4 satiety and start thinking. At time t

= 15 seconds, all philosophers simultaneously

hungry and took the chopsticks in his left hand. At

this time, there has been a deadlock condition,

because all the philosophers who were holding the

chopsticks in hand chopsticks left waiting on the

right. All philosophers will wait for each other.

IV. CONCLUSION
Dining Philosophers Problem is one of the

classic issues in the operating systems. Dining

Philosophers Problem can be described as follows;

there are five philosophers who want to eat. There

are five chopsticks on the table. Each philosopher

must use two chopsticks if he would like to eat the

spaghetti. If philosophers really hungry, then it will

take two chopsticks, which is in the right and left

hands. If there are philosophers who took two

chopsticks, then there are philosophers who have to

wait until the chopsticks are placed back. Inside

this problem there is the possibility of deadlock.

REFERENCES
[1]. R. Alur, H. Attiya and G. Taubenfeld,

"Time-Adaptive Algorithms for

Synchronization," in Proc. 26th ACM

Symposium on Theory of Computing,

Canada, 1994.

[2]. J. G. Vaughan, "The Dining Philosophers

Problem and Its Decentralisation,"

Microprocessing and Microprogramming,

vol. 35, no. 1, pp. 455-462, 1992.

[3]. Dijkstra, E. W.: Hierarchical Ordering of

Sequential Processes, Acts Informatica I,

115 – 138 (1971)

[4]. Brinch Hansen, P. Operating Systems

Principles. Prentice-Hall 1973.

[5]. Hoare, C.A.R. Towards a theory of parallel

programming, Operating Systems

Techniques, quoted above.

